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Chapter  2 

Time Scales, Epochs, and Intervals 

Time is an easy concept to envision.  Simply put, it is a nonspatial continuum in 
which events occur in apparently irreversible succession from the past through 
the present to the future.   However, the term is also used to describe an interval 
separating two points on this continuum, or duration.  Or it can refer to the length 
of this duration.  It can be a number representing a specific point on this contin-
uum, reckoned in hours, minutes, seconds, or in some other scale of measure-
ment.  It may denote a system by which such intervals are measured or such 
numbers are reckoned, as solar time.  It may define a season (e.g., harvest time) 
or an era in history (e.g., war time). 

Time can therefore be a daunting concept to grasp and quantify, just because 
there are so many ways in which it is defined, measured, and applied.  Even in 
scientific usage, the term spans a large repertoire of contextual applications. 

The attributes of time that are important in metric prediction are 

1. Epoch, or instant. 

2. Interval, defined by two instants. 

3. Duration, or interval length 

4. Scale, or unit of duration measure 

5. System, or application context 

Because a number of timescales and reference systems apply to metric prediction 
generation, conversions among systems of measure are also of great importance. 
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2.1 Epochs 

An epoch is an arbitrary fixed instant of time or date used as a chronological ref-
erence datum for calendars, celestial reference systems, star catalogs, and orbital 
motions. The standard epoch used within the MPG is noon on January 1, 2000, 
otherwise known as J2000, which is the start of the Julian year 2000.  The Julian 
Date of this epoch is JD 245,1545.0.  Other instants of time within the MPG are 
calculated as interval points having duration measured in seconds past J2000.  
Instants before J2000 have negative numeric values. 

2.2 Calendars 

A calendar is a system of organizing units of time (e.g., days) for the purpose of 
reckoning time over extended periods.  By convention, the day is the smallest 
calendrical unit (the measurement of fractions of a day is classified as time keep-
ing).  Actually, “day” here means a day and a night.  To avoid ambiguity whether 
“day” means “the daylight hours” or “a day and a night,” calendricists use the 
word nychthemeron (pl. nychthemera) for the 24-hour period spanning a day 
and a night.  Generally, “days” as used in this work refers to nychthemera. 

According to a 1987 estimate cited in the Explanatory supplement to the Astro-
nomical Almanac (ESAA), there are about forty calendars used in the world to-
day.  This chapter, however, is limited to only those appear in MPG computa-
tions, with a short history or description of each.  For a fuller description, consult 
the ESAA ([Seidelmann1992]). 

Early calendars commonly counted years from the beginning of the rule of a 
King, Emperor, or leader (regnal years).  The Romans counted from the start of 
the reign of the Emperor or Caesar and reset to one when the next Emperor took 
over. Alternatively, they counted from the founding of Rome, and so indicated by 
the letters AUC (ab urbe condita). 

The Julian calendar was introduced by Julius Caesar, in what we now denote as 
45 BC, as a replacement for the more complicated Roman calendar, taking force 
in 45 BC (709 AUC).  The calendar consisted of 3 years of 365 days followed by 
one having 366 days.  But years continued to be counted as regnal years. 

In about AD 523, the monk Dionysius Exiguus (Denis the Little) devised a way 
to implement rules set forth by the Nicean council (the so-called "Alexandrine 
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Rules") for calculating Easter. In his calculations, he chose to number the years 
since the birth of Christ, rather than the accession of the current monarch. He 
(wrongly) fixed Jesus' birth at 25 December 753 AUC, thus making the Christian 
era start with AD 1 on 1 January 754 AUC.  How he established the year of 
Christ's birth is not known, although a considerable number of theories exist.  He 
proposed this system of counting, but it was not immediately accepted. 

When another monk, The Venerable Bede (AD 673-735), wrote his history of the 
early centuries of Anglo-Saxon England, he promoted the system of Dionysius.  
Its use spread during the Middle Ages until it became a de facto standard.  Bede 
himself seems to have instituted the "BC" and "AD" year naming convention. In 
academic historical and archaeological circles, particularly in the United States, 
the AD period is sometimes referred to as the Common Era (CE) and the BC pe-
riod as Before the Common Era (BCE).   The AD-BC convention will be used in 
this work. 

While it is increasingly common to place AD after a date, by analogy to the use 
of BC, formal English usage adheres to the traditional practice of placing the ab-
breviation before the year, as in Latin (e.g., 100 BC, but AD 100). 

The Julian calendar based on the AD 1 epoch was in common use until the AD 
1500s, when countries started changing to the Gregorian calendar. Some coun-
tries (for example, Greece and Russia) used it into this century, and the Russian 
Orthodox Church still uses it, as do some other Orthodox churches.  However, 
the mean year in the Julian calendar was a little too long, causing the Vernal 
equinox to slowly drift. 

The Gregorian calendar is a modification of the Julian calendar that was first 
proposed by the Neapolitan doctor Aloysius Lilius, and then authorized by Pope 
Gregory XIII, for whom it was named, on February 24, 1582. The papal bull was 
signed in AD 1581, but, for unknown reasons, was not printed until 1 March in 
1582.  It was devised to correct the equinoctial slippage and to bring calendar 
dates back into alignment with equinoctial phenomena and to correct the method 
by which leap years were calculated.  The standard civil calendar in most coun-
tries today is the Gregorian calendar. 

Dates that occur prior to the adoption of a calendar system may still be reckoned 
according to that system by prolepsis , or the anachronistic representation of 
something as existing before its proper or historical time.  Thus, it is possible to 
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determine the actual year that was 46 BC, even though no calendar contained that 
year. 

2.3 Julian Date 

Astronomers now commonly designate calendar dates by Julian Date (JD), 
which is the interval of time in days and fraction of day since the epoch 4713 BC 
January 1, Greenwich noon, according to the Julian proleptic calendar.  The con-
vention was devised by John F. Herschel (son of astronomer William Herschel) 
in 1849.  He chose he beginning year as one in which the number in each of three 
subordinate calendar cycles1 was unity, and because it predated all historical 
dates at that time. 

Astronomers adopted Julian Dates in the late 19th century, but established the 
meridian of Greenwich as the datum instead of Herschel’s use of Alexandria, 
since the former had been made the Prime Meridian by international conference 
in 1884. 

Formulas for conversion between Gregorian dates and their corresponding Julian 
Dates (for JD > 0) appear in the ESAA (12.92).  Computer programs for these 
conversions also appear in Numerical Recipes (1.1). 

The modified Julian Date  (MJD) is defined as the Julian Date minus 2400000.5.  
Thus J2000 is MJD 51544.5. 

The term “Julian date” is also used in many applications to refer to a date format 
that combines the year and the number of days since the beginning of the year. 
Depending on the usage, the year is represented by either 2 or 4 digits, and the 
day of year by 3 digits.  For example, January 1, 2007 is represented either as 
2007001 or 07001. August 24,1999 is stored as 1999236 or 99236, since August 
24 is the 236th day of the year.  

 This form is not based on the Julian calendar, nor is it the Julian Date discussed 
above.  To avoid confusion and ambiguity, the term is not further used in this 

                                                 
1 The cycles are indiction cycle, Metonic cycle, and solar cycle.  The indiction cycle is a Roman tax 
cycle of 15 years declared by Constantine the Great. The Metonic cycle is a particular approximate 
common multiple of the tropical year and the synodic month, or 19 tropical years, which differs 
from 235 synodic months only by about 2 hours.   The solar cycle of 28 days is related to lunation 
rate. 
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work.  Should it be necessary to refer to dates in this format, the term year-doy 
number will be applied. 

2.4 Time Scales 

There are many time scales that are used in generating metric predictions for 
deep space missions applications.  These may be categorized as civil time, solar 
time, proper time, and coordinate time.  Each of these is related to the others, and 
there are subtle subclassifications within its category.  For example, civil time is 
designated as Universal Time, or UT; but UT comes in a number of flavors, such 
as UTC, UT0, UT1, and UT1R, discussed later in this Chapter.  Figure 2-1 enu-
merates the various timescales covered in this Supplement, along with the means 
of conversion among them. 

2.5 International Atomic Time (TAI) 

Proper time on Earth is reckoned in units of the SI (Système International) sec-
ond, defined as the duration of 9,192,631,770 cycles of radiation corresponding 
to the transition between two hyperfine levels of the ground state of cesium 133, 
as measured on the geoid (mean sea level).  This definition, though precise, is not 
totally accurate, as some variation among clocks implementing this standard is 
inevitable. 

International Atomic Time (TAI, from the French Temps Atomique Interna-
tional), is a practical implementation of the standard that conforms as closely as 
technology now permits to the definition of the SI second.  It is calculated as a 
weighed average of timescales obtained from a number of individual commercial 
atomic time-standards and primary frequency standards in many countries, as 
directed by the Bureau International des Poids et Measures in Sèvres, France.  
Corrections are applied for known effects to maintain accuracy, and the adjusted 
timescale is published as TAI. 

As will be shown later in this chapter, velocity and gravitational potential at a 
given location affect the rate of a clock’s oscillator.  This fact causes clocks at the 
equator to perform differently than the same clock at a pole, due to the differ-
ences in rotational velocity and gravitational potential. For this reason, compari-
sons of times from various locations require that a coordinate reference frame 
and a set of comparison standards need to be established. 
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In 1980 the Consultative Committee for the Definition of the Second (CCDS) 
proposed to the International Committee of Weights and Measures (CIPM, in 
French word order) that TAI be specifically defined as a coordinate timescale at a 
geocentric datum line having as its unit the SI second, as obtained on the geoid in 
rotation, and that TAI at other locations near the geoid be extended by applying 
corrections for relativistic effects. 

2.6 Dynamical Time (Ephemeris Time) 

Dynamical time represents the independent variable of the equations of motion of 
celestial bodies, spacecraft, and light rays in the solar system, measured in SI 
seconds relative to an established epoch and inertial coordinate reference frame.  
It is the time coordinate of ephemerides of such entities.   

Two principal inertial reference frames are used by the MPG: the solar system 
barycentric frame and the terrestrial geocentric frame.  According to relativity 
theory, there must exist mathematical transformations that correspond phenom-
ena that are observed in the two frames.  The timescales of the two frames, there-
fore, cannot both be unique.  However, they may be chosen in such a way that 
the timescales may differ only by periodic variations.  This will be addressed sec-
tions to follow. 

2.7 Terrestrial Time 

The dynamical timescale for apparent geocentric ephemerides was selected by 
the IAU to be a unique proper timescale, from which others would be derived, 
and termed Terrestrial Dynamic Time, or TDT.  They later decided to drop the 
“Dynamical” part of the name, to define the timescale as Terrestrial Time, or TT. 

They decided that the TAI instant January 1.0, 1977 would be made equal to the 
TT instant January 1.0003725, 1977.  This introduced a difference of exactly 
32.184 s between the two timescales.  The unit of the timescale was the SI sec-
ond at mean sea level.  

They also decided that a related barycentric timescale would be defined such that 
no periodic variations between that time scale and TT would exist. 
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TT is defined generally to be in step with TAI in order to take advantage of the 
direct availability of Coordinated Universal Time, or UTC, which is also based 
on the SI second measured on the geoid.  But since TAI is a statistical timescale 
based on average observed times and TT is an idealized uniform timescale, the 
two are not totally consistent.  The current definition is 

 32.184TT TAI s= +  (2-1) 

but may me altered in the future, if deemed appropriate. 

The relationship between TT and TAI provides continuity with an existing 
“ephemeris time” that was the independent variable in ephemeris generation in 
that era.  The chosen offset above is equal to the estimated difference between 
TAI and ephemeris time at the time TT was introduced.  

2.8 Barycentric Coordinate Time 

Proper distance in any frame conforms to the equation 

 
 2 i j

ijds g dx dx=  (2-2) 

established in Chapter 1, where ds lies along the geodesic and idx  are coordi-
nate differentials along the path of travel.  Substituting the ijg  components of the 
metric tensor for the n-body problem given in the previous chapter (also see 
Moyer, 1971, 6), using a Cartesian coordinate system, inserting the coordinate 
velocity, which is 

 
2 2 2

2
2 2 2

dx dy dz
v

dt dt dt
 

= + + 
 

 (2-3) 

and retaining only terms having order greater than 21/ c , the following equation 
results, relating proper time at some point on Earth to coordinate time in the 
barycentric reference frame: 

 
2 2 2

2 2 2 2 2 2

2 2
1 1

d ds U U v
dt c dt c c c
τ    = = − − +   

   
 (2-4) 
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Here U  is the sum of the Newtonian gravitational potentials of the ensemble of 
masses at the body whose motion is being addressed.  As is usual in relativistic 
time transformations, proper time runs slower than coordinate time, as evidenced 
by the right side of the equation being less than unity by an amount of order 

2 2(2 ) /U v c+ . 

If proper time is being measured by a TT clock on the geoid, then the velocity 
above is that of the clock with respect to the barycenter, and the significant gravi-
tational potential terms are those due to the Sun, Moon, and each of the planets 
(including Earth).  The barycentric timescale is called Barycentric Coordinate 
Time, or TCB.  Since TCB runs at a higher rate than TT, over centuries the two 
drift farther and farther apart. 

2.9 Barycentric Dynamic Time 

Earlier it was mentioned that coordinate times could be made to differ from TT 
by only periodic terms.  Such a timescale would not then drift apart from Earth 
clocks in the way that TCB does.  It is defined by scaling spacetime coordinates 
by a constant factor 1 L= +l  greater than unity chosen in such a way as to re-
move the secular drift over time. The scale factor l  does not affect the equations 
of motion for bodies or light.  However, it does alter the relationship between the 
rate of an atomic clock that records proper time on Earth (which is fixed at TT 
rate) and the rate of coordinate time in the barycentric frame.  

The coordinate timescale defined in this fashion is termed Barycentric Dynamic 
Time, or TDB, and is the independent variable in all ephemerides used by the 
MPG.  It is synonymous in this work with the term ephemeris time, except where 
otherwise specifically noted.  It differs from TT by at most by 1.7 ms. 

 (1 )TCB TDB L TDB= = +l  (2-5) 

The value required to render no long-term secular variation between TT and TDB 
has been determined (see the Appendix to this chapter) to be 

81.550505 10L −= × . 

The MPG uses two conversion routines provided by NAIF to translate between 
TAI and TDB.  These are HPTA2E (High Precision Time, Atomic to Ephemeris) 
and HPTE2A (High Precision Time, Ephemeris to Atomic).  It also uses two rou-
tines that translate between UTC and TDB; these are HPTU2E (High Precision 



Time Scales, Epochs, and Intervals  9 
 
Time, UTC to Ephemeris) and HPTE2U (High Precision Time, Ephemeris to 
UTC).  Their usage is documented in the code commentary. 

The time translation formula used in these utility functions was derived by JPL’s 
Ted Moyer (see Moyer81).  Moyer’s derivation of the TDB-TAI relationship is 
lengthy and detailed, as it also analyzes the magnitudes of all elements of the ap-
proximation, including terms which were then omitted from the final result as 
being inconsequential, insofar as its use in the ODP was concerned. An abbrevi-
ated version of that method appears in the Appendix to this chapter for readers 
who may wish to have insight into the relativistic theory of the transformation.  
Those with further interest may consult the reference, which is now archived in 
electronic form.  Those with less may skip the Appendix altogether. 

2.10 The TDB-TAI Equation 

Moyer’s 1981 paper [Moyer81] derives two forms of the TDB-TAI formula.  
One is a numeric expression involving the clock location and properties of vari-
ous mass centers (e.g., gravitational constant, velocity, and longitude of Jupiter, 
Saturn, and the Earth-Moon barycenter).  This formula appears in the ESAA 
(2.222).  The other is the vector form shown below. 

The vector form of the solution gives TDB TAI−  with considerably less compu-
tation and slightly greater accuracy than does the expression given in the ESAA.   

 

The vector form of solution, used in the NAIF high-precision time routines, is 
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 (2-6) 

in which 32.184AT s∆ = , x yr  denotes a vector from point x  to point y , over-
dot denotes differentiation with respect to TDB, b bG Mµ =  is the gravitational 
constant of body b , and A, E, B, S, J, and Sa refer, respectively, to the positions 
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of the atomic  clock, the geocenter, the Earth-Moon barycenter, the Sun, Jupiter, 
and Saturn.  

This equation is the same for all Earth-fixed clocks, whether on the geoid or not, 
as no restrictions are made as to clock location.  However, evaluation of the 
equation does require the clock’s location relative to the geocenter, and is there-
fore does not yield the same result for all DSSs.  This is a natural result, whose 
first-order results are predicted by special relativity. 

2.11 Evaluation of TDB Given TAI 

Because the TDB TAI−  formula is implicitly based on TDB , then given a 
TDB  value, the difference may be computed and TAI  found via the relationship 

 ( )TAI TDB TDB TAI= − −  (2-7) 

However, when TAI  is given, TDB  must be found by iteration.  The estimation 
of nTDB  by  

 1( ) 1n nTDB TDB TAI TAI−= − − +  (2-8) 

fortunately converges very rapidly. The first two terms of the TDB TAI−  for-
mula are the most significant, and provide the means for a good first estimate of 
TDB .   

The convergence rate is illustrated by considering the difference between two 
succeeding estimates, 

 
1 1 2

1 2

( ) ( )

( )

n n n n

n n

TDB TDB TDB TAI TDB TAI

d
TDB TDB

dTDB
τ

− − −

− −

− = − − −

∆
≈ −

 (2-9) 

The derivative factor has a value whose maximum magnitude is much smaller 
than unity (on the order of 910− ).  Each succeeding estimate is therefore much 
closer to the correct value than the preceding one. 

This iterative method is used in the NAIF HPTA2E utility. 
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2.12 Universal Time (UT) 

Prior to 1925, mean solar time was reckoned from noon in astronomical practice, 
and designated Greenwich Mean Time, or GMT.  Beginning in 1925, a 12h dis-
continuity was introduced in order that mean solar time was reckoned from mid-
night, rather than noon.  The Nautical Almanac used GMT for the new reckon-
ing, whereas, the American Almanac used Greenwich Civil Time, or GCT, for it.  
This confusion in terminology was finally removed by dropping both designa-
tions and instituting Universal Time, or UT.    

However, in the United Kingdom, GMT is sometimes still used.  For civil time-
keeping, it means UTC, and for navigation, it refers to UT1.  Thus, GMT has two 
meanings that can differ by as much as 0.9s, and is not used in DSN subsystems. 

UT is a measure of time that closely approximates the mean diurnal motion of the 
Sun.  UTC, which is really an atomic time scale for civil timekeeping, is dis-
cussed separately a little late in this Chapter.  Several other forms of UT exist and 
are used within the MPG, principally for determination of Earth’s attitude at a 
given UTC instant. 

The timescale designated as UT0 is determined directly from observations of the 
diurnal motions of the stars; it is slightly dependent on the place of observation.  
The timescale UT1 is obtained by correcting UT0 for the shift in longitude of an 
observing station caused by polar motion. Whenever the designation UT is used 
in this document, UT1 is implied.  UT1 contains 41 short-period terms between 5 
and 35 days that are caused by long-period solid Earth tides, designated as DUT1.  
When these are removed from UT1, the result is designated as regularized uni-
versal time, or UTR. 

UT1 is defined in such a way that it can be directly related to mean sidereal time 
through a mathematical formula , appearing later in this Chapter.  It thus does not 
refer to the motion of Earth, nor is it precisely related to the Sun’s hour angle.  

The apparent diurnal motion of the Sun involves both the nonuniform rotation of 
Earth and the motion of Earth in its orbit around the Sun.  UT1 was not based on 
the hour angle of the Sun because such a system of time measurements could not 
be related precisely to sidereal time, and could not be determined by observations 
star transits and other such celestial measurements. 
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UT1 is counted from 0 hours at midnight, with unit of duration the mean solar 
day, defined to be as uniform as possible despite variations in the rotation of 
Earth.  It is continuous (no leap seconds), but has a somewhat variable rate due 
Earth’s non-uniform rotational period. 

The International Earth Rotation Service (IERS) tabulates the difference between 
UT1 and UTC, 1 1UT UT UTC∆ = − , as IERS Bulletin B, which is available via 
the Internet.  However, the MPG receives this data from the Kalman Earth Orien-
tation Filter (KEO) interface, along with other Earth Orientation Parameters 
(EOP).  UT1 is then calculated as 

 1 1UT UTC UT= + ∆  (2- 10) 

2.13 Coordinated Universal Time (UTC) 

Coordinated Universal Time (UTC) was established on January 1, 1972 at 0h as a 
measure of time that now serves as the basis for almost all civil timekeeping. It is 
commonly accessed within the United States via broadcasts by the NIST radio 
station WWV and other services.  

As discussed above, it is related to Universal Time (UT), which is mean solar 
time, but UTC is really an atomic time.  UTC uses the SI second as it fundamen-
tal unit and is adjusted infrequently in order to maintain the transit of the prime 
meridian at a time near noon. Since Earth’s rotation is not uniform with respect 
to atomic time, a leap second is added or subtracted as necessary to prevent the 
error between UTC and mean solar time from exceeding 0.9s. Leap seconds are 
typically added at the end of December or June, but they can also appear (added 
or subtracted) at other designated times throughout the year.  

 ( )UTC TAI numberof leapseconds= −  (2- 11) 

Leap second adjustments affect the number of seconds per day and thus the num-
ber of seconds per year.   The number of leap seconds incorporated into the Janu-
ary 1, 1972 initial UTC epoch was 10.  Subsequently, the UTC timescale has 
marched backward relative to the TAI timescale exactly one second on each of a 
number of scheduled occasions. 

Precisely when leap seconds occur, and in which direction the correction is made, 
is currently the responsibility of the IERS, which publishes periodic bulletins 
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(Bulletin C) available via the Internet.  As specified in CCIR Report 517, a leap 
second is inserted following second 23:59:59 on the last day of June or Decem-
ber and becomes second 23:59:60 of that day. A leap second would be deleted by 
omitting second 23:59:59 on one of these days, although this has not yet hap-
pened, as of this writing. 

On July 4, 2005, the EIRS announced the introduction of the 33rd leap second on 
December 31, 2005.  The 32nd had been introduced on December 31, 1998. 

The MPG converts UTC into TDB, and vice versa, through use of the NAIF spe-
cial routines HPTU2E and HPTE2U, which require the presence of a file contain-
ing a time-tagged list of leap seconds, or, in SPICE parlance, a leap seconds ker-
nel. 

Earth is divided in to standard-time zones, and local times differ from UTC by an 
integral number of hours according to the particular time zone.  Parts of Canada 
and Australia differ by integer-plus-half hours.  

UTC times are referenced to the Zero meridian (Greenwich, England), which is 
often designated by a “Z” affixed to the time format, as 12:45:03Z. Z was thus 
designated as the international time zone for the prime meridian.  It is sometimes 
thus referred to phonetically as “Zulu” time. The U.S. local time zones are East-
ern ["R", "Romeo]; Central ["S", "Sierra"]; Mountain ["T", "Tango"]; Pacific 
["U", "Uniform"]; Alaska ["V", "Victor"], and Hawaii ["W", "Whiskey"]. 

2.14 Sidereal Time (ST) 

True sidereal time measures the Greenwich hour angle of the true equinox of 
date, measured westward from the true prime meridian of date (0=) about the true 
pole of date to the true vernal equinox of date.  As such, then, sidereal time is a 
direct measure of Earth’s diurnal rotation.  The MPG ordinarily uses the Preci-
sion Earth Model (PEM) for determining DSS locations and SPICE utilities, such 
as SPKEZ, for spacecraft positions.  However, it does require sidereal time to 
calculate the directions of radio sources.  For this reason, a discussion is included 
here. 

The period of time between two consecutive upper meridian transits of the equi-
nox is a sidereal day.  Since the rotation of Earth is subject to irregular forces, 
sidereal time is irregular with respect to atomic time.  The practical determination 
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of sidereal time from observations of radio sources and other means requires in-
clusion of Earth’s precession, nutation, and polar motion effects. 

2.15 Greenwich Mean Sidereal Time 

.Mean sidereal time is referenced to the mean equinox of date, which is perturbed 
only by precession.  Greenwich Mean Sidereal Time (GMST) is directly related 
to UT1 by a numerical formula.  Since January 1, 1984, Greenwich Mean Side-
real Time (GMST), measured in seconds, at 0h UT1 on day d , measured in days 
past JD2451545.0, is given by the following formula  appearing in the ESAA, 

 0

-11 2 -19 3

24110.54841 236.5553679087

6.9789 10 1.27 10

sGMST d

d d

= + +

+ × − ×
 (2-12) 

Note in this expression that Julian Dates begin at noon, so a given d at 0h has a 
fractional part of 0.5. Since the sidereal year is a full day longer than a solar year, 
each sidereal day is about 86400/365.25 236.55s=  longer than a UT day.  
Translated into units of degrees, this formula is   

 
o

13 2 22 3

100.46061838 0.985647366286

2.9079 10 5.3 10
oGMST d

d d− −

= + +

+ × − ×
 (2-13) 

That is, the Greenwich hour angle of the equinox advances about one degree per 
day.  The conversion of this expression into a general expression for mean side-
real time at any UT1 instant was done by Moyer (see Moyer2000, Eq. 5-173).  
His result, with d  now including days plus fractional days past J2000, is 

 
11 2 19 3

67310.54841 24.06570982442

6.9789 10 1.27 10

sGMST d

d d− −

= +

× − ×
 (2-14) 

Expressed in angular measure, this is 

 
13 2 22 3

280.460618375 360.9856473663

2.9079 10 5.3 10

GMST d

d d− −

° = + +

× − ×
 (2-15) 
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2.16 Greenwich Apparent Sidereal Time 

Apparent sidereal time is referenced to the true equinox (the intersection of the 
true equator of date with the ecliptic of date), and thus includes the effects of 
both precession and nutation.  Greenwich Apparent Sidereal Time (GAST) is 
related to GMST via the equation of the equinoxes (before 1960, this effect was 
called “nutation in right ascension”).  Nutation describes the motion of the true 
pole relative to the mean pole and may be resolved into components in longitude 
and obliquity.  The longitude component, between the mean equinox and the true 
equinox of date, is denoted ψ∆ , and the angle between the mean ecliptic of date 
and the true equator of date is the true obliquity, and denotedε .  Both of these 
quantities are available via IERS bulletins, and to the MPG via the KEO Filter 
interface. 

The difference between the true and mean right ascensions of a position on the 
true equator is the difference between apparent and mean sidereal time, 

 
cos

GAST GMST EE
EE CTψ ε

= +
= ∆ +

 (2-16) 

where EE  denotes the equation of the equinoxes and CT  includes the “com-
plementary terms” that were added to the “textbook” form of the equation of the 
equinoxes by IAU Resolution C7, Recommendation 3 (1994).  The new formula-
tion takes into account cross-terms between the various precession and nutation 
quantities, amounting to about 3 milliarcsec (83 microdeg). The transition from 
the old to the new model officially took place on February 27, 1997.  These terms 
were added to compensate for irregularities in the UT1 timescale traceable to side 
effects of nutation and precession.  By convention, the complementary terms 
were included in the equation of the equinoxes, rather than as apart of mean side-
real time. 

2.17 Approximate Equation of the Equinox 

The U. S. Naval Observatory (USNO) publishes approximate formulas for side-
real time, which may be accessed via the internet.  Their 1978 formulas for 
GMST and EE, based on an epoch of 00:00:00 January 1, 1900, were incorpo-
rated into the NSS MP.  An updated set is available that uses the J2000 epoch.  
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The expression for GMST in this set agrees with the one given above; the ap-
proximation for EE  is 

 

cos
0.004785sin 0.00036sin2

125.04 0.052954
280.47 0.98565
23.4393 0.0000004

EE
L

d
L d

d

ψ ε
ψ

ε

° = ∆ °
∆ ° = − Ω −

Ω°= −
° = +
° = −

 (2-17) 

In this formulation, Ω  is the longitude of the ascending node of the Moon’s orbit 
and L  is the mean longitude of the Sun.  All expressions are given in degrees. 

The cited maximum error resulting from the use of these formulas over the pe-
riod 2000-2100 is 0.432 seconds, with an rms error of 0.15 seconds.  At Earth’s 
diurnal rate, the maximum error amounts to about 1.8 mdeg.  Since this exceeds 
the MPG pointing error specification, it is unusable. 

2.18 Local Apparent Sidereal Time 

Local Apparent Sidereal Time (LAST) is the apparent right ascension of the local 
meridian. It can be obtained from the GAST by adding the meridian’s east longi-
tude. 

2.19 Solar Time 

Although solar time is not used in the MPG, it nonetheless has historical impor-
tance that mandates its inclusion in this Explanatory Supplement.  Apparent So-
lar Time is the oldest timescale of all, being the measure of time defined by the 
actual diurnal motion of the Sun.  It has been known since antiquity that the 
Sun’s motion is not uniform, a fact that became well established after the inven-
tion of clocks, which tended to measure uniform intervals of time.  Apparent So-
lar Time was the argument in The National Almanac and other national epheme-
rides until the early nineteenth century. Mean Solar Time was defined by the mo-
tion of an imaginary fiducial body (the fictitious mean Sun) that moved uniformly 
in the equatorial plane at a rate virtually equal to the mean rate of the true Sun’s 
motion in the ecliptic. As clocks improved and came into extensive use at sea in 
the late eighteenth and early nineteenth centuries, apparent time was eventually 
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superseded in civil use by Mean Solar Time.  In the mid-nineteenth century, it 
became the argument in the national ephemerides. 

At first, astronomers began counting time in hours past noon, so the Sun’s merid-
ian distance was indeed the time of day.  When the time of day began to be reck-
oned at midnight, it was necessary to add 12 hours to time to determine the loca-
tion of the fictitious mean Sun at that time. 

The difference between apparent and mean solar times is called the equation of 
time.   The principles for determining the equation of time extend back at least to 
the time of Ptolemy.  At first, the equation of time was a way of determining 
mean solar time from apparent solar time.  As clocks improved, it became a way 
of calculating apparent solar time from clock time, which kept, to the accuracy 
available at the time, mean solar time.  These clocks were regulated by observa-
tions of sidereal time. 

The underlying concept of mean solar time was that the rotation of Earth is uni-
form.  However, in the first half of the twentieth century it became obvious that 
this assumption could no longer be deemed acceptable.  To replace it, two new 
timescales came into being.  Ephemeris Time (ET) was introduced to satisfy the 
desire for a uniform measure of time that would be the independent variable in 
the mathematical computation of ephemerides, and Universal Time (UT) came to 
designate a measure of Earth’s rotation, as discussed in previous Sections of this 
Supplement. 

The irregularities in apparent solar time are principally due to two effects.  First, 
the motion of Earth in the ecliptic plane is not uniform, but is almost elliptical.  
The difference between the true anomaly and mean anomaly of Earth’s orbit is an 
angle through which Earth must turn in order for the Sun to transit the local me-
ridian.  The time required for Earth to rotate by this angle is therefore one com-
ponent of the equation of time. 

 The second effect is due to the inclination of Earth’s pole to the ecliptic, which 
makes the Sun, as viewed at Earth, traverse above and below the equatorial 
plane.  The projection of the Sun’s path on the equatorial plane thus causes fur-
ther distortions of the apparent motion. 

Both effects are annual phenomena, and tend to produce a characteristic cyclic 
variation over time.  A formula for the equation of time appears in the ESAA 
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(9.311).  However, the algorithm given below agrees with this formula within a 
few seconds, and is more intuitively understood.   

The procedure is to compute the true anomaly in the ecliptic, project this 
onto the equatorial plane, and subtract the mean motion in the equatorial 
plane, as follows:  Calculate Earth’s mean anomaly and obliquity, in radi-
ans (reduced, as necessary, to be in 0 2π− ), using 

 
9

6.2400407681 0.0172019698861

0.409092959363 6.36892077921 10

M d

dε −

= +

= − ×
 (2-18) 

where d  is the number of UT days past the J2000 epoch.  Next, invert Kepler’s 
equation2 to find the eccentric anomaly E  

 sinM E e E= −  (2-19) 

Then use Earth’s orbital eccentricity 0.01671e =  to compute the current longi-
tude (true anomaly) 

 ( )1 2tan 1 sin /(cos )e E E eθ −= − −  (2-20) 

Use the two-argument arc-tangent function, if available, to retain proper quadrant 
information. 

Rotate the ellipse in the ecliptic clockwise about the z axis by the adjusted true 
anomaly, θ − Ω , using a value for perihelion elongation from winter solstice of  

0.223796326795Ω = − , 

 
1 cos( )
1 sin( )
1 0

x
y
z

θ
θ

= − Ω
= − Ω
=

 (2-21) 

Rotate the ecliptic plane counterclockwise about the y axis by the obliquity 

                                                 
2 Iteration of Kepler’s equation converges rapidly, with 0 1, sini iE M E M e E −= = − , until 

4
1| | 10i iE E −

+ − <  .  This provides subsecond accuracy of conversion. 
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2 cos 1 sin 1
2 1
2 sin 1 cos 1

x x z
y y
z x z

ε ε

ε ε

= +
=
= − +

 (2-22) 

Finally, rotate the equatorial plane counterclockwise about the z axis by the ad-
justed mean anomaly, 

 
3 cos( ) 2 sin( ) 2
3 sin( ) 2 cos( ) 2
3 2

x M x M y
y M x M y
z z

= − Ω + − Ω
= − − Ω + − Ω
=

 (2-23) 

The equation of time, in minutes, and declination of the Sun, in degrees, are 

 

1

1

720
tan ( 3/ 3)

180
sin ( 3)

EOT y x

z

π

δ
π

−

−

= −

=
 (2-24) 

The leading fractions are conversion factors for the cited units. 

The resulting behavior plotted over time is shown in Figure 2-2.  A plot of the 
equation of time versus declination, known as an analemma, is shown in Figure 
2-3. 
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2.20 Time Representations and Standard Formats 

Epochs and intervals have different representations to humans than they have in 
machine form.  As mentioned earlier, SPICE and the MPG interpret times inter-
nally in the form of seconds past the J2000 epoch.  Human readable contexts are 
usually expressed as strings of characters. 

However, the variety of ways people have developed for expressing times in 
string formats is enormous. It is unlikely that any single software package can 
accommodate all of the custom time formats that have arisen in various comput-
ing contexts. However, SPICE and NAIF utilities correctly interpret most time 
formats used throughout the planetary science community.  It supports ISO, 
UNIX, VMS, and MS-DOS formats, with epochs in both AD and BC eras, and 
with time zone specifications.  These utilities transform from string to machine 
form and from machine form into strings.  Consult the SPICE required reading 
document TIME.REQ for complete details on formats and translations. 

Some of the more frequently human-readable formats are listed below.  The ISO 
formats specify strict forms with required terms and exact punctuation.  The 
SPICE and NAIF routines are much more general.  In ISO formats a “T” is re-
quired to indicate the beginning of a time specification. 

Year YYYY 

Year and Month YYYY-MM 

Complete Date  YYYY-MM-DD 

Complete Date and Time YYYY-MM-DDThh:mm:ss.ffTZD 

Year and Day of Year YYYY-DOY 

Year and Day of Year, plus 
Time 

YYYY-DOY DDThh:mm:ss.ffTZD 

Times are generally assumed to be expressed in UTC, with a special UTC desig-
nator ("Z").   Local times in ISO formats require offset designators. 
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In this table, the representations are 

YYYY  four-digit year 

MM two-digit month (01 is January, etc.) 

hh two-digit hour (00 through 23).   No “am/pm” in ISO. 

mm two-digit minute (00 through 59) 

ss two-digit seconds (00 through 59) 

f one or more digits representing decimal fractions of a second 

TZD time zone designator (e.g., Z)  or offset  

(+hh:mm or –hh:mm) 

 

SPICE utilities recognize a wider range of more user-friendly formats that are not 
as strict as the ISO forms.  For example, they also recognize Julian Dates, “am” 
or “pm”, and U.S. local time zone designations (e.g., PDT), as well as timescale 
designations (e.g., UTC, TAI, TDB, TDT). 

2.21 Spacecraft Atomic Time 

Given the spacecraft identifier and the ephemeris time of interest, the NAIF-
supplied function HPTDAT produces the derivative of Spacecraft Atomic Time 
(TAS3) with respect to ephemeris time in the form ( ) 1tD tt= −& , where t is a 
TDB time and ( )tt  is its equivalent atomic time aboard the given spacecraft.   

At one stage of its development, the MPG computed spacecraft atomic time in 
order to compute one-way light time values.  It therefore generated a polynomial 
profile that approximated ( ) ( )t t tt t∆ = −  within a prespecified error value.  
This data type was deemed unneeded for a number of reasons, and was later 
omitted from the MPG design. 

The reasons for not using the estimated TAS were that (1) one-way light time 
data products are used differentially, so that TAS disappears in the differences, 

                                                 
3 The word order here matches that of TDB and TAI, even though it does not represent a French 
word order.   “Spacecraft” in French would become “Astronef” or some other suitable term. 
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and (2) the TAS profile contained a constant of integration that could not be 
evaluated.  Nevertheless, the means that were used in the earlier design are in-
cluded here for historical purposes. 

The MPG produced the TAS polynomial profile by segmenting the time interval 
of interest (normally a pass) into intervals 1( , )i it t + , sampling tD  at five optimally 
spaced points over each interval, and integrating the results to form a profile of 
polynomials of degree 5.  Each polynomial in the profile was expressed in the 
standard MPG Everett form.  The samples values extracted were 

 1( , ( ), ( 33 /181), ( /2), ( 148 /181), ( ))Ti t i t i t i t i t iD t D t h D t h D t h D tt += + + +y (2-25) 

Here h is the interval length and it is time at the beginning of the ith interval.  The 
method of generating the polynomial from sample values is treated in the chapter 
on Interpolation in this Supplement. 

In this formulation, the value it  was recognized as a constant of integration, to 
be evaluated.  Given this value at the beginning of an interval, the subsequent 
endpoint value 1it +  will be determined by the interval length and linear combi-
nations of sample va lues.  To make the profile continuous at interval boundaries, 
the beginning value of the next interval becomes the final value of the previous 
one throughout the profile.   

Only the 0 0( )tt t=  of the initial interval thus remains unspecified.  This initial 
offset between spacecraft atomic time and ephemeris time is unknown, and was 
therefore set to zero in the earlier MPG development.  Since users of predictions 
involving TAS were generally insensitive to the true difference, this choice is of 
no known consequence. 
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Appendix A 

Derivation of TDB-TAI 

This Appendix presents an overview of the method found in Moyer’s [Moyer81] 
derivation of the relationship between TDB and TAI.  Computation of the scaling 
factor L is mentioned in the reference, but not directly computed.  The approxi-
mate computation of the scaling factor that appears below is due to the author. 

Computing the Scaling Factor 

If the scaled time (TDB) is denoted by T , where 

 t T= l  (2-26) 

then the relationship between proper time and TDB is 

 
2 2 2

2
2 2 2 2 2 2

2 2
1 1

d ds U U v
dT c dT c c c
τ     = = − − +    

    
l  (2-27) 

in which v  is the clock’s velocity relative to the solar system barycenter, trans-
lated into the barycentric  frame. 

If it is desired that no periodic terms in this equation appear, l  can be set to the 
value 

 
1/22

2 2 2

2 2
1 1

U U v
c c c

−
    = − − +    
    

l  (2-28) 

in which the  operation removes short-term variations.  A one-term Taylor 
expansion of the right hand side above in 21/ c  yields the evaluation 
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2

2

/ 2
1

U v

c

+
= +l  (2-29) 

It is convenient to define L  as the small departure from unity in this factor, 

 
2

2

/ 2U v
L

c

+
=  (2-30) 

It remains only to evaluate the secular parts of U  and 2v . 

Approximating the Scaling Factor   

An approximation method is useful to illustrate the method actually used.  Sup-
pose that the clock path is represented as a circular orbit at distance a  about a 
given center, and let the path of a given gravitational influence be represented 
also by a circular orbit at distance b  about the same center.  Let max( , )d a b=  
and min( , ) /a b dρ = .  Then the distance between the gravity source and clock 
may be computed using vector algebra, which will result in an algebraic function 
involving trigonometric variations over time.  Using an algebraic computational 
tool, such as Mathematica, the inverse distance function may be expanded in a 
Taylor series in ρ  to determine the constant and periodic terms. The secular por-
tion of the Newtonian potential for that gravity source is then found to be 

 
2 49

1
4 64iU

d
µ ρ ρ 

= + + + 
 

L  (2-31) 

where G Mµ =  is the gravitational constant of the source.  This expression may 
be applied to the Sun ( , 0a AU b= = ), Moon ( ,Earth Moona r b dist= = ), Earth 
( , 0Eartha r b= = ), and each of the planets ( , planeta AU b dist= = ), to provide 
the approximate contributions of these bodies to the scale factor. 

Similarly, the velocity may be represented a constant vector whose magnitude is 
the mean geocentric velocity about the barycenter added to a rotating vector 
whose magnitude is the mean diurnal clock velocity.  The result is  

 
2 2

2 22
365.25 1

EarthrAU
v

days day
ππ   

≈ +   
   

 (2-32) 
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The composite result is that 81.55059 10L −≈ × .  The value published in the 
ESAA is 81.550505 10L −= × , and that used in the NSS MP was 

81.5505204 10L −= × .  The approximation has omitted eccentricities in orbits 
and the effects of considering the Earth-Moon motion about their barycenter, 
which are included in the actual computation.  Nonetheless, the agreement is 
pretty good. 

The rate difference between TDB and TCB thus turns out to be about 48.93 
s/century.  The rate difference between TDB computations using the ESAA rate 
and the one approximated above is only about 3 ms/century, and using the ESAA 
and NSS MP rates is only about 0.5 ms/century. 

Computing the Periodic Part 

In order to compute TDB, it is first necessary to determine the differential equa-
tion relating the rates of the two timescales.   This may be done by square-rooting 
the metric equation.  Then the right-hand side may be expanded in a Taylor series 
in 21/ c , with terms of order higher than 21/ c  discarded.  The result is  

 
2

2

/ 2
1

d U v
L

dT c
τ +

= − +  (2-33) 

It then remains only to integrate this differential equation. In practice, TDB (T  
above) is determined from TT (τ  above) by means of appropriate mathematical 
approximations.  Secular terms disappear due to the presence of the L  term.  The 
desired form of solution is the time difference 

 
0

2

0 2

/ 2T

T

U v
T T dT

c
τ

 +
− = ∆ +  

 
∫  (2-34) 

where { }Q Q L= −  retains only the periodic parts of Q . 

In 1981, JPL’s Ted Moyer (Moyer 81) published two forms of solution.  One had 
appeared in a JPL Technical Report several years earlier, in 1971.  This is essen-
tially the one that appears in the ESAA, and is the one that is used by the NSS 
MP.  The 1981 article also developed a vector form of the solution, which is the 
one used in the MPG.  Moyer’s article cites others who have derived similar for-
mulas.  In fact, several formulas appear have greater accuracies (errors as low as 
1 ns, but nominally –131 to 64 ns) than the Moyer forms, but they all contain 
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considerably more (127 to 1637) terms.  The Moyer solutions are sufficiently 
accurate (within about 4 µs) for MPG applications, and the vector form is the one 
used in the MPG and ODP. 

Moyer’s derivation of the TDB-TT formula is lengthy and detailed, as it also ana-
lyzes the magnitudes of all elements of the approximation, including terms which 
were then omitted from the final result as being inconsequential, insofar as its use 
in the ODP was concerned. An abbreviated version of that method will be pre-
sented here for readers who may wish to have insight into the relativistic theory 
of the transformation.  Those with further interest may consult the reference, 
which is now archived in electronic form.  Those with less may skip the remain-
der of this subsection. 

Since only periodic terms remain in the solution, only these will be retained in 
the analysis as it progresses.  The constant terms, of course, accumulate into the 
L  parameter, and provide its more accurate determination. 

The following notation will be used to designate vector positions and veloc ities:  
αr  denotes the position of the entity α  with respect to the solar system barycen-

ter, and αr&  denotes its derivative with respect to coordinate time (velocity);  αβr  
denotes the vector β α−r r and αβr&  is its time derivative. Entities of interest are 
the Sun (S), Moon (M), Earth (E), the Earth-Moon barycenter (B), Jupiter (J), 
Saturn (Sa), and the atomic clock (A) that is recording TT.  The other planets are 
indexed by their numerical order outward from the Sun. 

The integrand contains the quantity 

 2 / 2A AU v+  (2-35) 

which is the sum of the potential and kinetic energies per unit mass at the clock 
location.  The first step is to express each of these terms in geocentric terms, 
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The potential EU  is evaluated at the geocenter, and thus excludes Earth’s gravi-
tational effects. 

In the second of these equations, 2
EAv  is the square of the geocentric velocity of 

the clock, which is constant if the effects of solid earth tides, polar motion, and 
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nutation are ignored.  It therefore may be dropped from further consideration.  In 
the first equation, the remaining terms in the Taylor expansion of the potential 
are omitted as inconsequential.  Further, Newton’s law can be used to estimate 
the potential gradient term within the required order of 21/ c  terms 

 E EU∇ ≈ r&&  (2-37) 

so that 

 
( )E EA

E EA E EA E EA

d
U

dT
⋅

∇ ⋅ = ⋅ = − ⋅
r r

r r r r r
&&& & &  (2-38) 

Notice that the negative term in this equation cancels a term in the earlier veloc-
ity equation.  The differential time equation time periodic terms are now 
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 (2-39) 

Moreover, the derivative term on the right-hand side can be integrated directly, 
leaving only the first term to be further manipulated. 

The same kind of action can be applied to the variation about the Earth-Moon 
barycenter, in which ( )E E B BU U U U= − +  and E EB B= +r r r .  The BU  term is 
evaluated at the Earth-Moon barycenter, and excludes terms due to Earth and 
Moon.  The result is 
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 (2-40) 

Again, only the first term on the right requires further manipulation. 

The remaining potential term, 

 , ,B B S B i
i

U U U= +∑  (2-41) 

is the sum of the gravitational potential at B  due to S  and due to each of the 
other 8 planets.  However, only the contributions due to Jupiter and Saturn were 
found to be significant, so only these terms are assumed in what follows. 
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The quantity iµ  is the gravitational constant of the planet i , or, when it refer-
ences the Earth-Moon barycenter, to the combined gravitational constants of 
Earth and Moon.  The iρ  parameter is the same as that defined earlier, the peri-
odic terms of the earlier Taylor expansion are now retained, and iλ  is the longi-
tudinal angle between i  and B as viewed at S .  Moyer’s work determined that 
only the first two terms in the expansion were found to be needed for the accu-
racy required. 
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As for the velocity term, since B S SB= +r r r , 2
Bv  becomes 
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The approximation assumes that the squared velocity of the Sun about the solar 
system barycenter has negligible periodic terms.  As earlier, the acceleration term 
may be replaced by its Newtonian potential within the accuracy limits imposed, 
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The sum extends over the Earth-Moon barycenter and retained planets. The dot 
product S SB⋅r r&&  is then 
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These terms cancel with corresponding terms in the expansion of BU .  The re-
sulting time differential equation is now 
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The remaining steps presume that the Earth-Moon barycenter, Jupiter, and Saturn 
are in heliocentric elliptical orbits.  The squared-velocity term is given by the vis-
viva equation, 

 2 2 1
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v
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 (2-48) 

in which SBa  is the ellipse semimajor axis.  The Earth-Moon barycentric terms 
are then 
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in which the final terms contain no periodic elements, and may thus be dropped 
from consideration.   

Also for an elliptic orbit, the inverse of the radial distance is a function of the 
eccentric anomaly E  (not to be confused with the E  used elsewhere to denote 
the position of Earth) and the ellipse eccentricity e , given by 
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Only the latter term contains periodic elements, so the first may be omitted. 

Further, the derivative of the eccentric anomaly with respect to coordinate time is 

 
1 1S E M S

SB SB

E
r a r a

µ µ µ µ+ +
= ≈&  (2-51) 

The ratio of the left-hand side of this equation to the right-hand side is unity.  
Multiplication of the expression for the periodic elements of the Earth-Moon 
barycentric terms by this form of unity gives 
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Another property of elliptic orbits is that 

 sin( )SB SB S SBe a Eµ⋅ =r r&  (2-53) 

As a consequence, then, an integrable form is obtained, 

 ( )
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2
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S SB
SB SB

SB

v d
r dT
µ 
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 

r r&  (2-54) 

A similar treatment of Jupiter and Saturn contributions provides 

 i i
i i

S i S i

d
r dT
µ µ

µ µ

     = ⋅   
+    

r r&  (2-55) 

The TDB-TAI Equation 

Since all terms in the time differential equation are now integrable, the final re-
sult is at hand. Integration adds a constant value 0T∆  to the integrated periodic 
terms, which may be chosen to make T τ−  have an agreed-upon value at a 
given epoch.  Since TT and TAI are defined so as to differ only by a constant, the 
integrated equation can also express the difference TDB TAI−  by appropriate 
choice of the integration constant.  

The 16th General Assembly of the IAU adopted the value 32.184AT∆ = s.  The 
final expression for the time differential is 
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 (2-56) 

Moreover, this equation is the same for all Earth-fixed clocks, whether on the 
geoid or not, as no restrictions were made as to clock location. 

This vector form of the solution gives TDB TAI−  with considerably less com-
putation and slightly greater accuracy than does the expression given in the 
ESAA, which is a function of time and the topocentric coordinates of the atomic 
clock.   



Time Scales, Epochs, and Intervals  33 
 

References 

[Moyer1971] Moyer, T. D. (1971), “Mathematical Formulation of the Double 
Precision Orbit Determination Program,”, Technical Report 32-1527, Jet Propul-
sion Laboratory, California Institute of Technology, Pasadena, CA, May 15, 
1971. 

[Moyer2000] Moyer, T. D. (2000), Formulation for Observed and Computed 
Values of Deep Space Network Data Types for Navigation, JPL Publication 00-7, 
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 
October 2000. 

[Seidelmann1992] Seidelmann, K. P. (ed) (1992), Explanatory Supplement to the 
Astronomical Almanac, University Science Books, Mill Valley, CA,1992. 

[NAIF1997] TIME.REQ (1997), SPICE Toolkit, Navigation and Ancillary In-
formation Facility, Jet Propulsion Laboratory, Pasadena, CA, July 1997. 

[Taus1998-1] Tausworthe, R. C., “Translation of Polynomials to and from 
Everett Form,” Mathematica study Everett-Horner.nb,  MPG Archive, 
NPP Release Directory, January, 1998. 

 [Taus1998] Tausworthe, R. C., and Walther, J. Y., “Estimation of Spacecraft 
Atomic Time from its Derivative Using the Error Ridge Method,” Mathematica 
study TAS-Ridge-Errors.nb,  MPG Archive, NPP Release Directory, July, 
1998. 


