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Introduction

The Einstein equations are often refered to, even in informal (i.e. unscientific) conversations
as the (most) fundamental laws governing the structure and predicting the future of the
universe. However for most people this subject still remains schrouded in mystery, even for
some undergraduate students. My purpose is to unravel the Einstein equations, to clarify its
components and the relations they describe. In the last section I will derive symbols, used
in cosmology from the Einstein equations. It is not the intention to give a formal derivation,
but more an intuitive feeling for the ideas behind this theory. However, most students should
be able to understand the math.

prerequistites, notation

In order to be able to follow this paper, one should be equipped with a fundamental set of
‘tensor analysis’. The most important properties being:

o 4d-vectors e.g. 2# = (20,21, 2% 2?) = (¢, z)!
e 4-tensor like 7" (16 components) or R%_s (256 components)

e contravariant (z#, 0*) and covariant (z,, d,) components of vectors and (in general)
tensors or derivatives.

o Using the metric tensor to raise or lower indices: V,, = g, V"

3
e contraction, which reduces the rank of a tensor with two, e.g. R, = R/\Mv => RAMV
A=0

Here the \’s are dummy indices and could be replaced by any other greek letter.

e tensor transformation from one frame to another:

oz’ e s oz’ 9x'v poB

AIH — —
oV Oz OxP

In this paper I will stick to the following notation
e greek letters for 4-vectors and latin indices for (spatial) 3-vectors.

o 0, for (ordinary) differentiation %, V,, for the covariant derivative ?

Lthe speed of light in x® (ct) is to be taken 1 in this paper
2what exactly the covariant derivative is, will be clear after reading this paper
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1 The Einstein Field Equations

The Einstein Field equations are:

|G = 87GT,, (1)

In which
e G, =R, — %ng is the Einstein tensor, which measures the curvature of spacetime
e G is Newtons constant®

Ty

, is the energy-momentum tensor.

guv is the metric, a generalisation of the Minkowski metric 7,

e R, is the Ricci tensor, a contraction of the Riemann curvature tensor.

Ry, = R\ (2)

R is the curvature scaler, the contraction of the Ricci tensor

R=R", (3)

In the following 4 chapters I will describe the varies components of the Einstein equations.
The last chapter is an application of the Einstein equations on cosmology.

2 The metric g,
In special relativity we have the invariant
dr? = dt? — da® — dy? — dz* = napda®dz’ (4)

where 1,8 = diag (1,—1,—1,—1) is the Minkowski metric. The Minkowski metric only
applies in special relativity, where we have fo: =0.
According to the principle of relativity there is always a freely falling (comoving) coor-

2¢0a
dinate frame £% in which % vanishes. In another coordinate frame a* the invariant dr?2
becomes

o o¢h
2 __ o v o__ n v
dr —nag—amudz D dz” = gy datde (5)
Where g,,,, is the metric tensor
%3 o¢h
uv = Oxh axl,naﬂ (6)

3In contrary to c, I will not set this constant 1
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3 The Energy-Momentum Tensor

The energy-momentum tensor 7),, is a symmetric tensor, which conserves energy and mo-
mentum. It’s described by this conservation law, rather than an exact defenition. I will give
an example of this tensor for fluids.

Consider a fluid characterised by the density field p(x) and four-velocity

. dzt dt da*
ut = dr = (Ea ?) = ('Y,'YV) (7)

The boost term ~y restricts the discussion to special relativity, but our goal is to show the
conservation of energy and momentum. Let’s define the momentum-energy tensor to be *

™ = (p + p)utu” — pg"” (8)

Where g*” will be replaced by n*”.
Now in a Newtonian case (v << c¢), the pressure (p) is small compared to the density of
mass energy (p) °, thus the components become

T‘“’z< i pv’ ) 9)

pvF ’ pvIvF + poIk

Note that u® = v ~ 1 in the Newtonian case. Then the conservation of energy and momentum
will appear if T*¥ is contracted with 0,

a,TH = 0. (10)
This immediately gives for up =0
dp
9T" = — +Vv=0 11
% T VY (11)
the equation of continuity. The yu = k components become:
, 0
—(pv*) + ——(pv"*) + —p=0 12
ar PV g ) g (12)

Rewriting this equation and using the equation of continuity, we get the following set of
equations:

0 . 0 v O j ;0 0
Par’ v 8tp+v 2 (pv?) + pv 5‘sz = T okt
0 0 ,
P e 7 —
Vi~ g (o) 0
This finally gives Fuler’s equation :

ov 1

-~ Vv=--V 1
N +(v-V)v ; D (13)

In general relativity the 0, is replaced by V,, so we get the following list of properties

4the following discussion is in a viewpoint of special relativity. However the equations can be generalised
(to general relativity)

5because 1 took the speed of light 1, for a fair compairison the units must be equal and p should be
multiplied with ¢?
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Properties of the energy momentum tensor \

e TH ig the energy-momentum (or stress-energy) tensor, in which the momentum and
energy are contained.

e TH¥ is symmetric: TH = TVH

o V,I" = 0. An expression for the conservation of energy and momentum.

4 The Riemann Curvature Tensor
The defenition of the Riemann curvature tensor (in a coordinate basis) is
R%.5 = Oy T 05T Gy + 10 g5 =TT, (14)

where the I'’s are the connection coefficients, sometimes refered to as affine connections .
The need to introduce these terms comes from the generalization of the partial derivative,
Oy, to the covariant derivative V,,. This is the proper derivative in general relativity, because
it transforms as a tensor 8 . In flat spacetime, the covariant derivative reduces to the partial.
Its definition is

Vu VY =09,V +T7,V* (16)

Whereas the connection coefficients itself, can be defined with the additional condition called
metric compatibility
Vpg;w =0 (17)

This condition also allows for lowering and raising indices of the metric. The connection
coefficient are then defined by

1
FU;W - 59[”) (augup + augp,u - 8pg,uu) (18)

The connection coefficients and thus the Riemann Tensor are derived from the metric. Fur-
thermore with metric compatibility contracting a covariant derivative simplifies

g V,V* =V,V, (19)

Thus the metric can be interchanged with the (covarient) derivative.

Now the relevance of the Riemann Tensor is its property that it is the only tensor that
includes the metric and is linear in its second derivatives. au&,go‘ﬁ , which would be a
logical choice, is not right, because the result doesn’t represent a proper tensor (i.e. it
doesn’t transform as a tensor). v“vygaﬁ is wrong as well, because this is zero by metric
compatibility. Because of (18) the Riemann tensor in its covariant form (Ragys = gauR'5,5)
reduces to

1
Rogys = 3 (04089as — 0v0a9sp — 05039ar + 050a9+3) (20)

As has been said before, the Riemann Tensor is composed of 256 components, but all are
not independent. The following symmetries from the equation above reduce the independent

6That Oy doens’t transform as a tensor is easily seen:
’ ozH oz’ oxh oz’ oxh 92z
v _ [ 22 v — v el "
OV = <8x“/ 8”) < oxV v > oxh' OV (©uV7) + dxH 8&:“8&0“‘/ (15)

The first part obeys tensor transformation, but the second term obviously does not.
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components of the Riemann Tensor to 20. ”

symmetries of the Riemann tensor |

(antisymmetry on last two indices) Rapys = Raglyel (21a)
Ra[gwg] =0 (21b)
(antisymmetry on first two indices) Raopys = Riaglys (21c)
(symmetry under pair exchange) Rapys = Rysap (21d)
completely vanishing of antisymmetric part B8] = e
letely vanishing of anti i Riagys) =0 21
The ’[ ]’ is a notation for:
1
Raglye) = 9 (Ragys — Rab’tsv) (22)
1
Rajgrs) = 5j (Rapys + Ravsp + Raspy — Rapsy — Rarss = Rasyp) (23)

Thus a '+’ sign for an even permutation of 3v¢§, and a -’ sign for an odd permutation of

Bv6. From (22) it is easily seen where the antisymmetry comes from
The Riemann tensor is of fourth order, but can be contracted to form the Ricci tensor
RP or the curvature scaler R.

RIW = R)\;AAV (24)
R=R" = g"R,, (25)

These are needed to form the Einstein tensor GHY.

5 The Einstein tensor

The Einstein Tensor is given by

1
GMV = RMV — §Rgl“j (26)

properties of the einstein tensor |

e G, vanishes when spacetime is flat
e G, is constructed from the Riemann tensor and the metric.

e G, is different from other tensors that can be constructed from the Riemann tensor
and the metric by the demands:

(1) G, is linear in Riemann

(2) G (like T},,) is symmetric

"Not all these relations are independent from each other, however. (21a) and (21b) follow directly from
the Riemann Tensor. Relation (21c) follows when the metric is included. (21d) and (21e) follow from the
first three equations
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(3) G, (like T},,) obeys the Bianchi identity 8 °
VHG L, =0 (30)

6 Einstein’s modification

Einstein modified his Field equation in order to provide a static universe. He introduced the
term A as cosmological constant

GH + Agh” = 8rxTH (31)
A nonzero value of A no longer results in the vanishing of G*¥ in vacuum. I will not elaborate
on the cosmological constant, but give an (simple) application of the Einstein equations in
cosmology.

7 Applications on cosmology

The Robertson-Walker metric!? is (without derivation)

-1 0 0 0
2
0 =8 9 0
L= ke 32
s 0 0 a(t)? 0 (82)
0 0 0 a?(t)r?sin® @
and for the inverse g"” (because g"”g,,, = ¢!/ and the metric is diagonal).
-1 0 0 0
1—kr?
= 0 0
7 a?(t) 33
g 0 0 a2(1)r2 0 ( )
0 0 0 !

a2(t)r?sin2 0

Where a = a(t) is a time-dependent scale factor. k measures the curvature and is only
interesting for k = —1, k = 0, k = +1. The table gives an qualitive relation between the

8That the Bianchi identity is indeed true can best be seen in an inertial frame. Because G (like Ty is
a proper tensor, the relation will then be true in every frame. In an inertial frame the connection coefficients
vanish and the derivatives are partial. The Riemann tensor is then simplified to

Ropgys = 030sgary — 080~y gas + 0a0v3955 — 0a0s59a~ (27)

And now contracting this (g% Ra,,) and using property (19) we get for the Ricci Tensor and for the
curvature scaler

Ry =0—0u0%gar + Uguw — 0%0ugua (28a)
R=g" Ruy = —0"0%ay + 0 — 00" gua = —20°9%gup (28b)

Contraction of the Einstein tensor then gives
1
8HGW/ = 8M(Rp,u - gguuR) = _Daagau + Da”gw - 3“(%80‘9,,& + 80(‘9“,/8”)869045

The first two terms cancel, as do the last two terms.
9a more generalised version of the Bianchi Identity is
0= V[/\Rpa]uy = V)\Rpauu + V(TR)\pp,l/ + VpRcr)\;w =0 (29)

where I used the antisymmetry of the Riemann tensor in its first two components (i.e. Roopr = 7Rgm“,).
10The RW-metric demands two assumptions about the universe: Isotropy and homogeneity of space
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curvature of the universe (k) and the density (£2). The aim of this section is to derive this
relation.

k | curvature Q

-1 | negative open Q<1
0 | euclidean flat Q=1
1 positive  closed Q >1

Because g, is given, the connection coefficients can be calculated with (18). Some are
explained in more detail.

1 1 aa

rf, = 590[) (0191p + 019p1 — 0pg11) = —590030911 =172 (34a)
1 . kr

r9, = _590030922 —aar? T, = T (34b)
1

IS5 = —590050933 = aar’sin® 0 (34c)

a

F(ln = F%o = F(2)2 = F%o = ng = Fgo = a (34d)
1 11— kr?

L3y = —=g"01g202 = —% 5 " or2q? = —r(r — kr?) (34e)
2 2 a

1
IY = —r(r — kr?)sin® 6 2, =T3 =T%,=T%, = . (34f)
I'2, = —sinfcosf Iy, =T3, = cotf (34g)

where a is the time derivative of a(t). The nonzero components of the Ricci-Tensor are:
Roo = R 5o = 00 — 9oT'0x + TpaTh — Tholhy =
. .o N
_% (3a> _3%:32 (35a)
Ry = RYy = 0T, — 0Ty — 81 (T1; + Ty +T7;)
+T% (Tgy + T8y +T53) + iy (T1y + %, +T3)

a

- F(1)111(1)1 - F(1)111%0 - F%lr%l - F%IF% - F13F?3 = (35D)
_ai+2a* + 2k

N 1 — kr?
Roo = r* (ai + 24° + 2k) (35¢)
Rss = r? (ad + 24 + 2k) sin® 0 (35d)

With the curvature scalar becoming

v 6 . .

R=g" Ruyzﬁ(aa—l—ag—&—k) (36)

Now we apply the Einstein equation (1) with 7}, for a perfect fluid (8) in a comoving frame.
Then

8rGT", = 8nG diag(p, —p, —p, —p) = G*, (37)
The two independent components of the Einstein Tensor are
1 1 3a% + 3k
GOO :ROO — §Rg00 = gOOROO — §R58 - T (3834)
1 1 —2ad —a® — k
GY=R' - -Rg", =¢"Ri1 — zRé| = ———F—— (38b)

2 2 a?
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Equation (38a)'! leads to Friedmann equation

5 881G,

With the following notations
a 3H? p
H = — e = —— = —
a p 81G Pe
This can be rewritten as
k
N—1=——= 40
a’Hg (40)

The relation between 2 and k is clear.
Of course many more interesting relations can be obtained, but this would be too much

for this paper. For those interested I would suggest the college cosmology.

11(38b) leads to the equation of conservation of energy. I will not elaborate on this equation in this paper,
but it does play an important role in cosmology (e.g. to define the decelaration parameter ¢ = —%)
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